Definitions | State(ds), State(ds), state@i, vartype(i;x), loc(e), f(x)?z, P Q, x. t(x), x.A(x), pred(e), <a, b>, first(e), suptype(S; T), S T, x:A.B(x), x,y. t(x;y), pred!(e;e'), SWellFounded(R(x;y)), constant_function(f;A;B), e < e', val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), EOrderAxioms(E; pred?; info), IdLnk, EqDecider(T), , Id, EState(T), P Q, {T}, f g, IsPrimeIdeal(R;P), IsIntegDom(r), a b, IsMonHom{M1,M2}(f), IsGroup(T;op;id;inv), IsMonoid(T;op;id), monot(T;x,y.R(x;y);f), Cancel(T;S;op), FunThru2op(A;B;opa;opb;f), fun_thru_1op(A;B;opa;opb;f), Dist1op2opLR(A;1op;2op), IsAction(A;x;e;S;f), IsBilinear(A;B;C;+a;+b;+c;f), BiLinear(T;pl;tm), Inverse(T;op;id;inv), Comm(T;op), Assoc(T;op), Ident(T;op;id), CoPrime(a,b), Connex(T;x,y.R(x;y)), AntiSym(T;x,y.R(x;y)), Trans(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Refl(T;x,y.E(x;y)), IsEqFun(T;eq), Inj(A;B;f), InvFuns(A;B;f;g), a =!x:T. Q(x), P Q, P & Q, SqStable(P), e(e1,e2].P(e), e[e1,e2].P(e), e[e1,e2].P(e), e[e1,e2).P(e), e[e1,e2).P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e<e'.P(e), e c e', (e < e'), e loc e' , (e <loc e'), l_disjoint(T;l1;l2), (x l), Outcome, q-rel(r;x), r < s, r s, y is f*(x), (xL.P(x)), xL. P(x), x f y, A c B, a < b, a <p b, a b, a ~ b, b | a, x:A. B(x), Dec(P), T, if b then t else f fi , True, case b of inl(x) => s(x) | inr(y) => t(y), inl x , tt, f(a), inr x , ff, Unit, False, Void, t.1, let x,y = A in B(x;y), A, {x:A| B(x)} , , , e X, Type, E(X), E, P Q, strong-subtype(A;B), a:A fp B(a), [f?g], x:A. B(x), Top, left + right, x:AB(x), b, x:A B(x), AbsInterface(A), ES, t T, s = t |